The accuracy of grid digital elevation models linearly constructed from scattered sample data
نویسندگان
چکیده
In this paper, a theoretical-empirical model is developed for modelling the accuracy of a grid digital elevation model (DEM) linearly constructed from scattered sample data. The theoretical component integrates sample data accuracy in the model by means of the error-propagation theory. The empirical component seeks to model what is known as information loss, i.e. the sum of the error due purely to sampling the continuous terrain surface with a finite grid interval and the interpolation error. For this purpose, randomly spaced data points, supposed to be free of error, were converted into regularly gridded data points using triangulation with linear interpolation. Original sample data were collected with a 262 m sampling interval from eight different morphologies, from flat terrain to highly rugged terrain, applying digital photogrammetric methods to large-scale aerial stereo imagery (1 : 5000). The DEM root mean square error was calculated by the true validation method over several sets of check points, obtaining the different sampling densities tested in this work. Several empirical models are calibrated and validated with the experimental data set by modelling the DEM accuracy by combining two variables such as sampling density and a descriptive attribute of terrain morphology. These empirical models presented a morphology based on the product of two potential functions, one related to the terrain roughness and another related to the sampling density. The terrain descriptors tested were average terrain slope, standard deviation of terrain slope, standard deviation of unitary vectors perpendicular to the topographic surface (SDUV), standard deviation of the difference in height between adjacent samples in the grid DEM (SDHD), and roughness estimation by first-, second-, or third-degree surface fitting error. The values obtained for those terrain descriptors were reasonably independent from the number and spatial distribution of the sample data. The models based on descriptors SDHD, SDUV, and standard deviation of slope provided a good fitting to the data observed (R.0.94) in the calibration phase, model SDHD being the one that yielded the best results in validation. Therefore, it would be possible to establish a priori the optimum grid size required to generate or store a DEM of a particular accuracy, with the saving in computing time and file size that this would mean for the digital flow of the mapping information in GIS.
منابع مشابه
Effect of digital elevation model’s resolution in producing flood hazard maps
Flooding is one of the most devastating natural disasters occurring annually in the Philippines. A call for a solution for this malady is very challenging as well as crucial to be addressed. Mapping flood hazard is an effective tool in determining the extent and depth of floods associated with hazard level in specified areas that need to be prioritized during flood occurrences. Precedent to the...
متن کاملDigital Elevation Accuracy and Grid Cell Size: Effects on Estimated Terrain Attributes
Terrain attributes are commonly used to explain the spatial variability of agronomic, pedologic, and hydrologic variables. The terrain attributes studied here (elevation, slope, aspect, and curvature) are estimated readily from digital elevation models (DEMs), but questions remain about how the accuracy and sample spacing of the elevation data affect the estimated attributes. The main objective...
متن کاملنقشهبرداری رقومی کلاسهای خاک با استفاده از نقشه خاک قدیمی در منطقه خشک جنوب شرق ایران
Mapping the spatial distribution of soil taxonomic classes is important for useful and effective use of soil and management decisions. Digital soil mapping (DSM) may have advantages over conventional soil mapping approaches as it may better capture observed spatial variability and reduce the need to aggregate soil types. A key component of any DSM activity is the method used to define the relat...
متن کاملEffects of Digital Elevation Models (DEM) Spatial Resolution on Hydrological Simulation
Digital Elevation Model is one of the most important data for watershed modeling whit hydrological models that it has a significant impact on hydrological processes simulation. Several studies by the Soil and Water Assessment Tool (SWAT) as useful Tool have indicated that the simulation results of this model is very sensitive to the quality of topographic data. The aim of this study is evaluati...
متن کاملEstimate and Comparison of Frequency Ratio and Network Analysis models in Rock falling Zoning( Case study Zanjan road to Taham and Tarom)
Evaluating and comparing the performance of Frequency ratio coefficient models and network analysis in Rock fall zoning (A case study of Zanjan-Taham-Tarom Road) Extended Abstract One of the natural hazards of the collapse of rocks from the foothills of the mountains, causing great financial losses and loss of life. Especially when it comes to the path of communication. The rock fall is a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal of Geographical Information Science
دوره 20 شماره
صفحات -
تاریخ انتشار 2006